

SAFETY DATA SHEET

Issuing Date No data available Revision Date 18-Oct-2016 Revision Number 1

1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING

Product identifier

Product Name SUNOCO SUPREME

Other means of identification

Product Code(s) 023600

UN/ID no. 1203

Synonyms Leaded racing gasoline

Recommended use of the chemical and restrictions on use

Recommended Use Liquid: automotive refuelling

California Air Resources Board (CARB): This product cannot be sold, offered for sale, supplied or offered for supply for motor vehicles in California except in competition racing

vehicles. Not Legal For Use in Any Other Motor Vehicle.

Uses advised against No information available

Details of the supplier of the safety data sheet

Supplier Address

Sunoco LP

3801 West Chester Pike

Newtown Square Pennsylvania 19073

Sunoco Race Fuels email: performanceproducts@sunoco.com

http://www.Sunocoracefuels.com

Emergency telephone number

Company Phone Number Product Safety Information 1-888-567-3066

Email sunocomsds@sunoco.com

24 Hour Emergency Phone Number Sunoco LP: (800) 964-8861

Emergency Telephone Chemtrec 1-800-424-9300 24 Hour Emergency Phone Number

2. HAZARDS IDENTIFICATION

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin corrosion/irritation	Category 2
Reproductive toxicity	Category 1A
Specific target organ toxicity (single exposure)	Category 3
Specific target organ toxicity (repeated exposure)	Category 2
Aspiration toxicity	Category 1
Flammable liquids	Category 2

Label elements

ENG / AGHS Page 1/15

Danger

Hazard statements

Causes skin irritation

May damage fertility or the unborn child

May cause drowsiness or dizziness

May cause damage to organs through prolonged or repeated exposure (central nervous system, liver, kidney, respiratory system and cardiovascular system)

May be fatal if swallowed and enters airways

Highly flammable liquid and vapor

Appearance Clear Liquid

Physical state liquid

Odor Gasoline

Precautionary Statements - Prevention

Obtain special instructions before use

Do not handle until all safety precautions have been read and understood

Use personal protective equipment as required

Wash face, hands and any exposed skin thoroughly after handling

Use only outdoors or in a well-ventilated area

Do not breathe dust/fume/gas/mist/vapors/spray

Keep away from heat/sparks/open flames/hot surfaces. - No smoking

Keep container tightly closed

Ground/bond container and receiving equipment

Use spark-proof tools and explosion-proof equipment

Take precautionary measures against static discharge

Precautionary Statements - Response

IF exposed or concerned: Get medical advice/attention

If skin irritation occurs: Get medical advice/attention

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower

Wash contaminated clothing before reuse

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician

Do NOT induce vomiting

In case of fire: Use CO2, dry chemical, or foam for extinction

Precautionary Statements - Storage

Store locked up

Store in a well-ventilated place. Keep cool.

Precautionary Statements - Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

static accumulator

Vapors may form explosive mixture with air

Other Information

EXTREMELY FLAMMABLE LIQUID AND VAPOR. VAPOR MAY CAUSE FLASH FIRE

.....

ENG / AGHS Page 2/15

3. COMPOSITION/INFORMATION ON INGREDIENTS

Substance

Not applicable.

Mixture

Synonyms

Leaded racing gasoline.

Chemical name	CAS No.	Weight-%	Trade secret
Naphtha (petroleum), light alkylate	64741-66-8	80-95	*
Toluene	108-88-3	5-15	*
Tetraethyl Lead	78-00-2	0.18-0.27	*
Xylene	1330-20-7	0.001-0.01	*
Ethylbenzene	100-41-4	0.001-0.01	*
Benzene	71-43-2	0.001-0.01	*

^{*}The exact percentage (concentration) of composition has been withheld as a trade secret.

4. FIRST AID MEASURES

Description of first aid measures

Inhalation Remove to fresh air. Give artificial respiration if victim is not breathing. If breathing is

difficult, administer oxygen. Get immediate medical advice/attention.

Eye contact Rinse thoroughly with plenty of water for at least 15 minutes, lifting lower and upper eyelids.

Consult a physician.

Skin contact Wash skin with soap and water for 20 minutes. Remove and isolate contaminated clothing

and shoes. Get immediate medical advice/attention. Injection injuries may not appear serious at first but within a few hours, without proper treatment, the area will become swollen, discolored and extremely painful. Following injection, prompt debridement of the wound is necessary to minimize necrosis and tissue loss. Wash contaminated clothing

before reuse.

Ingestion If swallowed, call a poison control center or physician immediately. Never give anything by

mouth to an unconscious person. Get immediate medical advice/attention. Do NOT induce

vomiting.

Most important symptoms and effects, both acute and delayed

Symptoms Causes headache, drowsiness or other effects to the central nervous system. Dizziness.

Disorientation. Aspiration can cause nausea and vomitting.

Indication of any immediate medical attention and special treatment needed

Note to physicians A patient adversely affected by exposure to this product should not be given adrenaline

(epinephrine) or similar heart stimulant since these would increase the risk of cardiac arrhythmias. Aspiration hazard if swallowed. Can enter lungs and cause damage.

5. FIRE-FIGHTING MEASURES

Suitable Extinguishing Media

In case of fire: Use CO2, dry chemical, or foam for extinction. Use extinguishing measures that are appropriate to local circumstances and the surrounding environment. In the event of fire, cool tanks with water spray.

ENG / AGHS Page 3/15

Unsuitable extinguishing media

CAUTION: Use of water spray when fighting fire may be inefficient.

Specific hazards arising from the

chemical

No information available.

Explosion data

Sensitivity to Mechanical Impact None.

Sensitivity to Static Discharge

EXTREMELY FLAMMABLE LIQUID AND VAPOR. VAPOR MAY CAUSE FLASH FIRE. Vapors can travel considerable distances to a source of ignition where they can ignite, flash back, or explode. static accumulator. Vapors can form explosive mixtures with air. May be ignited by friction, heat, sparks or flames.

Special protective equipment for fire-fighters

Firefighters should wear self-contained breathing apparatus and full firefighting turnout gear. Use personal protection equipment.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Personal precautions Keep people away from and upwind of spill/leak. Do not touch or walk through spilled

material. ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). Avoid breathing vapors or mists. Ensure adequate ventilation. Do not touch damaged

containers or spilled material unless wearing appropriate protective clothing.

For emergency responders Use personal protection recommended in Section 8.

Environmental precautions

Environmental precautions Prevent entry into waterways, sewers, basements or confined areas. Local authorities

should be advised if significant spillages cannot be contained. See Section 12 for additional

Ecological Information.

Methods and material for containment and cleaning up

Methods for containment Prevent further leakage or spillage if safe to do so. Absorb or cover with dry earth, sand or

other non-combustible material and transfer to containers.

Methods for cleaning up Pick up and transfer to properly labeled containers. Use clean non-sparking tools to collect

absorbed material.

Prevention of secondary hazards Clean contaminated objects and areas thoroughly observing environmental regulations.

7. HANDLING AND STORAGE

Precautions for safe handling

Advice on safe handling

Avoid breathing dust/fume/gas/mist/vapors/spray. Use only with adequate ventilation. Avoid contact with skin, eyes or clothing. Wash thoroughly after handling. Do not siphon by mouth. Static charges can accumulate during shipping, unloading, pouring or conveying. This product is a poor conductor of electricity and can become electrostatically charged. If sufficient charge is accumulated, ignition of flammable mixtures can occur. To reduce potential for static discharge, use proper bonding and grounding procedures. Bonding and grounding alone may be inadequate to eliminate fire and explosion hazards associated with electrostatic charges. In addition to bonding and grounding, efforts to mitigate the hazards of an electrostatic discharge may include, but are not limited to, ventilation, inerting and/or reduction of transfer velocities. Always keep the nozzle in contact with the container throughout the loading process. Do not fill any portable containers in or on a vehicle. Special precautions, such as reduced loading rates and increased monitoring, must be observed during "switch loading" operations (i.e. loading this material in tanks or shipping

ENG / AGHS Page 4/15

compartments that previously contained middle distillates or similar products). Non-equilibrium conditions may increase the risks associated with static electricity such as tank and container filling, tank cleaning, sampling, gauging, loading, filtering, mixing, agitation, etc. Dissipation of electrostatic charges may be improved with the use of conductivity additives when used with other mitigating efforts, including bonding and grounding. Empty containers may contain product residue. Empty containers pose a potential fire and explosion hazard. Do not cut, puncture of weld containers. Dispose of empty containers and wastes safely.

Conditions for safe storage, including any incompatibilities

Storage Conditions

Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from heat, sparks, flame and other sources of ignition (i.e., pilot lights, electric motors and static electricity). Dispose of empty containers and wastes safely. NFPA Class 1B Storage.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

Exposure Limits

Chemical name	ACGIH TLV	OSHA PEL	NIOSH IDLH
Naphtha (petroleum), light alkylate 64741-66-8	-	-	-
Toluene 108-88-3	TWA: 20 ppm	TWA: 200 ppm Ceiling: 300 ppm	IDLH: 500 ppm TWA: 100 ppm TWA: 375 mg/m³ STEL: 150 ppm STEL: 560 mg/m³
Tetraethyl Lead 78-00-2	8-hr TWA: 0.1 mg/m³	8-hr TWA: 0.075 mg/m ³	IDLH: 40 mg/m³ Pb IDLH: 100 mg/m³ Pb TWA: 0.075 mg/m³ Pb TWA: 0.050 mg/m³ Pb
Xylene 1330-20-7	STEL: 150 ppm TWA: 100 ppm	TWA: 100 ppm TWA: 435 mg/m ³	-
Ethylbenzene 100-41-4	TWA: 20 ppm	TWA: 100 ppm TWA: 435 mg/m ³	IDLH: 800 ppm TWA: 100 ppm TWA: 435 mg/m³ STEL: 125 ppm STEL: 545 mg/m³
Benzene 71-43-2	STEL: 2.5 ppm TWA: 0.5 ppm	TWA: 10 ppm applies to industry segments exempt from the benzene standard at 29 CFR 1910.1028 TWA: 1 ppm (Ceiling: 25 ppm STEL: 5 ppm see 29 CFR 1910.1028	IDLH: 500 ppm TWA: 0.1 ppm STEL: 1 ppm

Other Information

Sunoco derived Time Weighted Average (TWA) for Alkylate: 100 ppm.

Appropriate engineering controls

ENG / AGHS Page 5/15

Engineering controls Ensure that evewash stations and safety showers are close to the workstation location.

Handle product only in closed system or provide appropriate exhaust ventilation. Use with

local exhaust ventilation. Use explosion-proof ventilating equipment.

Individual protection measures, such as personal protective equipment

Eve/face protection Wear safety glasses with side shields (or goggles). Face protection shield.

Hand Protection Wear suitable gloves. Break though time: >8 hours. Nitrile rubber. Viton™. Teflon.

Skin and body protection If there is a risk of contact:. Impervious clothing. Protective shoes or boots. Nitrile rubber.

Viton™. Teflon.

Respiratory protection If exposure limits are exceeded or irritation is experienced, NIOSH/MSHA approved

respiratory protection should be worn. Positive-pressure supplied air respirators may be required for high airborne contaminant concentrations. Respiratory protection must be provided in accordance with current local regulations. Half-mask air purifying respirator with organic vapor cartridges is acceptable for exposures to ten (10) times the exposure limit. Full-face air purifying respirator with organic vapor cartridges is acceptable for exposures to fifty (50) times the exposure limit. Exposure should not exceed the cartridge limit of 1000 ppm. Protection by air purifying respirators is limited. Use a positive pressure-demand full-face supplied air respirator or SCBA for exposures greater than fifty (50) times the

exposure limit.

Handle in accordance with good industrial hygiene and safety practice. General hygiene considerations

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state liquid Clear Liquid **Appearance** Gasoline Odor Color clear **Odor threshold** <1 ppm

Property Values Remarks • Method Not applicable Not applicable

рΗ No data available None known Melting point / freezing point Boiling point / boiling range 38 - 127 °C / 100 - 260 °F Estimated Flash point -40 °C / -40 °F (est.) None known **Evaporation rate** No data available None known Flammability (solid, gas) No data available None known Flammability Limit in Air None known Upper flammability limit: 7.6 Reference value

Lower flammability limit: 1.5 Reference value Vapor pressure 5-6 psia Reference value Vapor density No data available None known Relative density 0.72 ASTM D 287 Water solubility NIL - 15% Reference value Solubility in other solvents No data available None known

Partition coefficient 2 - 7

Reference value 280 °C / 536 °F Reference value **Autoignition temperature** Decomposition temperature No data available None known Kinematic viscosity No data available None known None known Dynamic viscosity No data available

Explosive properties No information available **Oxidizing properties** No information available

Other Information

ENG / AGHS Page 6/15

Softening point
Molecular weight
VOC Content (%)
Liquid Density
Bulk density
No information available
No information available
No information available
No information available

10. STABILITY AND REACTIVITY

Reactivity No information available.

Chemical stability Stable under normal conditions.

Possibility of hazardous reactions None under normal processing.

Hazardous polymerization Hazardous polymerization does not occur.

Conditions to avoid Keep away from open flames, hot surfaces and sources of ignition. Take precautionary

measures against static discharge. Vapors can form explosive mixtures with air.

Incompatible materials Strong oxidizing agents, strong acids, and strong bases. Halogens. Halogenated

compounds. Peroxides. Chlorine.

Hazardous decomposition products Carbon monoxide. Carbon dioxide (CO2). Asphyxiants.

11. TOXICOLOGICAL INFORMATION

Information on likely routes of exposure

Product Information

Inhalation Specific test data for the substance or mixture is not available.

Eye contact Specific test data for the substance or mixture is not available.

Skin contact Specific test data for the substance or mixture is not available.

Ingestion Specific test data for the substance or mixture is not available.

Information on toxicological effects

Symptoms Causes headache, drowsiness or other effects to the central nervous system. Dizziness.

Disorientation. Skin irritation. Erythema (skin redness). Aspiration can cause nausea and

vomitting.

Numerical measures of toxicity

Acute toxicity

The following values are calculated based on chapter 3.1 of the GHS document .

 ATEmix (oral)
 6,122.00

 ATEmix (dermal)
 2,245.00

 ATEmix (inhalation-dust/mist)
 125.00

Chemical name	Oral LD50	Dermal LD50	Inhalation LC50
Naphtha (petroleum), light alkylate 64741-66-8	> 7000 mg/kg (Rat)	> 2000 mg/kg (Rabbit)	> 6.31 mg/L (Rat) 4 h
Toluene 108-88-3	= 2600 mg/kg (Rat)	= 12000 mg/kg (Rabbit)	= 12.5 mg/L (Rat) 4 h

ENG / AGHS Page 7/15

Tetraethyl Lead	= 12300 μg/kg (Rat) = 12.3	= 990 mg/kg (Rabbit)	= 850 mg/m ³ (Rat) 1 h
78-00-2	mg/kg (Rat)		
Xylene	= 3500 mg/kg (Rat)	> 4350 mg/kg (Rabbit) > 1700	= 29.08 mg/L (Rat) 4 h = 5000
1330-20-7		mg/kg (Rabbit)	ppm (Rat)4h
Ethylbenzene 100-41-4	= 3500 mg/kg (Rat)	= 15400 mg/kg (Rabbit)	= 17.4 mg/L (Rat)4 h
Benzene	= 810 mg/kg (Rat) = 1800	> 8200 mg/kg (Rabbit)	= 44.66 mg/L (Rat) 4 h
71-43-2	mg/kg (Rat)		

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Skin corrosion/irritation

Samples of gasoline and a number of low boiling point naphtha streams have been tested in rabbit skin irritation studies. The majority of the data were derived using a 24 hour occluded exposure protocol. The degree of dermal irritation observed was variable, ranging from slight to moderate/severe, normally persisting for up to 14 days. There was no evidence of skin corrosion. Heavier, aromatic materials caused more irritation than lighter, paraffinic streams (API, 1995).

Serious eve damage/eve irritation

The effects of gasoline and low boiling point naphtha streams on the eye have been investigated in rabbits using a number of samples. None of the samples tested showed more than minimal redness and swelling, which resolved quickly (ARCO, 1986-A).

Respiratory or skin sensitization

Tests in guinea pigs with gasoline and a number of low boiling point naphtha streams showed no evidence of skin sensitization (ARCO, 1986-B). There are no reports available to indicate that gasoline or low boiling point naphthas have the potential to cause respiratory sensitization.

Germ cell mutagenicity

The mutagenic potential of gasoline and low boiling point naphthas has been extensively studied in a range of in vivo and in vitro assays. The majority of the studies showed no evidence of mutagenic activity (API, 1977; API, 2005). The classification as a carcinogen or mutagen need not apply if it can be shown that the substance contains less than 0,1 % w/w benzene (EINECS No 200-753-7). This note applies only to certain complex coal- and oil-derived substances in Part 3.

Carcinogenicity

The carcinogenic potential of gasoline has been investigated in rats and mice following inhalation exposure for 2 years. In rats, there was an increased incidence of kidney tumors in males and in mice there was an increased incidence of liver tumors in females; further work has shown that these tumors are sex and species specific and are not considered relevant to humans (Short BG et al., 1989). Results of 2 year skin painting studies with gasoline or low boiling point naphthas have shown either no, or weak potential (low incidence and long latent period) for the development of skin tumors. Additional work has shown that where tumors arise they are most likely a result of a non-genotoxic response due to dermal irritation (API, 1983).

Chemical name	ACGIH	IARC	NTP	OSHA
Toluene 108-88-3	-	Group 3	-	-
Tetraethyl Lead 78-00-2	-	Group 3	Reasonably Anticipated	Х
Xylene 1330-20-7	-	Group 3	-	-
Ethylbenzene 100-41-4	A3	Group 2B	-	Х
Benzene 71-43-2	A1	Group 1	Known	Х

Reproductive toxicity

Results of guideline developmental toxicity studies on gasolines and OECD developmental toxicity screening studies with low boiling point naphtha streams showed no evidence of developmental toxicity in rats (Roberts L et al, 2001). Similarly, studies in rats with gasoline did not show any effect on reproductive performance (McKee RH et al, 2000). Gasoline and low boiling point naphthas can contain amounts of toluene and/or n-hexane, constituents that are classified as reprotoxicants.

ENG / AGHS Page 8/15

STOT - single exposure

Acute exposure studies show no evidence of systemic toxicity, other than a potential to cause narcosis/CNS depression at higher exposure concentrations (Drinker P et al, 1943; Davis A et al 1960).

STOT - repeated exposure

The repeat dose toxicity of gasoline and low boiling point naphthas has been studied in rats following dermal and inhalation exposure for periods between 10 days and up to 2 years. The effects of repeated inhalation exposure of primates to gasoline have also been studied. In dermal studies, no systemic toxicity has been seen; the only effect observed was moderate to severe dermal irritation. Repeated inhalation exposure causes light hydrocarbon nephropathy in male rats, an effect which is considered to be both sex and species specific. (Halder CA et al, 1985; API, 2005; ARCO, 1986-C).

Aspiration hazard

Gasoline and low boiling point naphthas are low viscosity, mobile hydrocarbon liquids with a viscosity at 40°C of < 7 mm2/s.

12. ECOLOGICAL INFORMATION

Ecotoxicity

Not determined.

Chemical name	Algae/aquatic plants	Fish	Toxicity to	Crustacea
			microorganisms	
Naphtha (petroleum),	30000: 72 h	-	-	2: 48 h Mysidopsis bahia
light alkylate	Pseudokirchneriella			mg/L LC50
64741-66-8	subcapitata mg/L EC50			
Toluene	433: 96 h	15.22 - 19.05: 96 h	EC50 = 19.7 mg/L 30 min	
108-88-3	Pseudokirchneriella	Pimephales promelas		magna mg/L EC50 Static
	subcapitata mg/L EC50	mg/L LC50 flow-through		11.5: 48 h Daphnia
	12.5: 72 h	12.6: 96 h Pimephales		magna mg/L EC50
	Pseudokirchneriella	promelas mg/L LC50		
	subcapitata mg/L EC50	static 54: 96 h Oryzias		
	static	latipes mg/L LC50 static		
		28.2: 96 h Poecilia		
		reticulata mg/L LC50		
		semi-static 5.8: 96 h		
		Oncorhynchus mykiss mg/L LC50 semi-static		
		5.89 - 7.81: 96 h		
		Oncorhynchus mykiss		
		mg/L LC50 flow-through		
		14.1 - 17.16: 96 h		
		Oncorhynchus mykiss		
		mg/L LC50 static 11.0 -		
		15.0: 96 h Lepomis		
		macrochirus mg/L LC50		
		static 50.87 - 70.34: 96 h		
		Poecilia reticulata mg/L		
		LC50 static		
Tetraethyl Lead	0.1: 48 h Dunaliella	84: 96 h Lepomis	-	0.085: 48 h Artemia
78-00-2	tertiolecta mg/L EC50	macrochirus mg/L LC50		salina mg/L EC50
		19.3: 96 h Pimephales		
		promelas mg/L LC50		
Xylene	-	13.4: 96 h Pimephales	EC50 = 0.0084 mg/L 24 h	3.82: 48 h water flea
1330-20-7		promelas mg/L LC50		mg/L EC50 0.6: 48 h
		flow-through 2.661 -		Gammarus lacustris mg/L
		4.093: 96 h		LC50
		Oncorhynchus mykiss		
		mg/L LC50 static 13.5 -		
		17.3: 96 h Oncorhynchus		
		mykiss mg/L LC50 19: 96		
		h Lepomis macrochirus		
		mg/L LC50 30.26 - 40.75:		

ENG / AGHS Page 9/15

Ethylbenzene 100-41-4	4.6: 72 h Pseudokirchneriella subcapitata mg/L EC50 438: 96 h Pseudokirchneriella subcapitata mg/L EC50 1.7 - 7.6: 96 h Pseudokirchneriella subcapitata mg/L EC50 static 2.6 - 11.3: 72 h Pseudokirchneriella subcapitata mg/L EC50	Oncorhynchus mykiss mg/L LC50 static 7.55 - 11: 96 h Pimephales promelas mg/L LC50 flow-through 4.2: 96 h Oncorhynchus mykiss mg/L LC50 semi-static 32: 96 h Lepomis macrochirus mg/L LC50 static 9.1 - 15.6: 96 h Pimephales promelas	EC50 = 9.68 mg/L 30 min EC50 = 96 mg/L 24 h	1.8 - 2.4: 48 h Daphnia magna mg/L EC50
	static	mg/L LC50 static 9.6: 96 h Poecilia reticulata mg/L		
Benzene 71-43-2	29: 72 h Pseudokirchneriella subcapitata mg/L EC50	LC50 static 10.7 - 14.7: 96 h Pimephales promelas mg/L LC50 flow-through 22330 - 41160: 96 h Pimephales promelas µg/L LC50 static 5.3: 96 h Oncorhynchus mykiss mg/L LC50 flow-through 28.6: 96 h Poecilia reticulata mg/L LC50 static 70000 - 142000: 96 h Lepomis macrochirus µg/L LC50 static 22.49: 96 h Lepomis macrochirus mg/L LC50 static		8.76 - 15.6: 48 h Daphnia magna mg/L EC50 Static 10: 48 h Daphnia magna mg/L EC50

Persistence and degradability

No information available.

Bioaccumulation

No information available.

Chemical name	Partition coefficient
Toluene 108-88-3	2.7
Tetraethyl Lead 78-00-2	4.32
Xylene 1330-20-7	2.77 - 3.15
Ethylbenzene 100-41-4	3.2
Benzene 71-43-2	2.1

ENG / AGHS Page 10 / 15

Other adverse effects

No information available.

13. DISPOSAL CONSIDERATIONS

Waste treatment methods

Waste from residues/unused products

Dispose of in accordance with local regulations. Dispose of waste in accordance with

environmental legislation.

Contaminated packaging

Do not reuse empty containers.

		I = = = · · · · · ·	I===	
Chemical name	RCRA	RCRA - Basis for Listing	RCRA - D Series Wastes	RCRA - U Series Wastes
Toluene 108-88-3	U220	Included in waste streams: F005, F024, F025, F039, K015, K036, K037, K149, K151	-	U220
Tetraethyl Lead 78-00-2	P110	-	-	-
Xylene 1330-20-7	-	Included in waste stream: F039	-	U239
Ethylbenzene 100-41-4	-	Included in waste stream: F039	-	-
Benzene 71-43-2	U019	Included in waste streams: F005, F024, F025, F037, F038, F039, K085, K104, K105, K141, K142, K143, K144, K145, K147, K151, K159, K169, K171, K172		U019

Chemical name	RCRA - Halogenated	RCRA - P Series Wastes	RCRA - F Series Wastes	RCRA - K Series Wastes
	Organic Compounds			
Toluene 108-88-3	Organic Compounds	-	Toxic waste waste number F025 Waste description: Condensed light ends, spent filters and filter aids, and spent desiccant wastes from the production of certain chlorinated aliphatic hydrocarbons, by free radical catalyzed processes. These chlorinated aliphatic hydrocarbons are those having carbon chain lengths ranging from one to and including five, with	
			varying amounts and positions of chlorine substitution.	
Tetraethyl Lead 78-00-2	-	P110	-	-

Chemical name	California Hazardous Waste Status
Toluene 108-88-3	Toxic Ignitable
Tetraethyl Lead	Toxic

ENG / AGHS Page 11 / 15

78-00-2	
Xylene	Toxic
1330-20-7	Ignitable
Ethylbenzene	Toxic
100-41-4	Ignitable
Benzene	Toxic
71-43-2	Ignitable

14. TRANSPORT INFORMATION

DOT Regulated
UN/ID no. 1203
Proper shipping name Gasoline

Hazard Class 3
Packing Group

Reportable Quantity (RQ)

Toluene RQ: 1000 lbs (454 kg); Tetraethyl lead RQ: 10 lbs (4.54 kg); Benzene RQ: 10 lbs

(4.54 kg); Ethyl benzene RQ; 1000 lbs (454 kg); Xylene RQ: 100 lbs (45.4 kg)

Special Provisions 144, 177, B1, B33, IB2, T4

TDG Regulated
UN/ID no. 1203
Proper shipping name Gasoline
Hazard Class 3

Hazard Class 3 Packing Group II

<u>IATA</u> Regulated

UN/ID no. 1203
Proper shipping name Gasoline
Hazard Class 3

Packing Group II
ERG Code 3H
Special Provisions A100

IMDGRegulatedUN/ID no.1203Proper shipping nameGasoline

Hazard Class 3 Packing Group II

EmS-No. F-E, S-E **Special Provisions** 243, 363

RID Regulated
UN/ID no. 1203
Hazard Class 3
Packing Group II

ADR Regulated
UN/ID no. 1203
Hazard Class 3
Packing Group II

15. REGULATORY INFORMATION

International Inventories

TSCA Complies
DSL/NDSL Complies
EINECS/ELINCS Complies
ENCS Does not comply

ENG / AGHS Page 12 / 15

IECSCCompliesKECLCompliesPICCSCompliesAICSComplies

Legend:

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory

DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

EINECS/ELINCS - European Inventory of Existing Chemical Substances/European List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances

IECSC - China Inventory of Existing Chemical Substances

KECL - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

AICS - Australian Inventory of Chemical Substances

US Federal Regulations

SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372.

SARA 311/312 Hazard Categories

Acute health hazard Yes
Chronic Health Hazard Yes
Fire hazard Yes
Sudden release of pressure hazard No
Reactive Hazard No

CWA (Clean Water Act)

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42).

Chemical name	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants	CWA - Hazardous Substances
Toluene 108-88-3	1000 lb	Х	Х	Х
Tetraethyl Lead 78-00-2	10 lb	Х	-	Х
Xylene 1330-20-7	100 lb	-	-	Х
Ethylbenzene 100-41-4	1000 lb	Х	Х	Х
Benzene 71-43-2	10 lb	Х	Х	Х

CERCLA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material.

Chemical name	Hazardous Substances RQs	CERCLA/SARA RQ	Reportable Quantity (RQ)
Toluene	1000 lb 1 lb	-	RQ 1000 lb final RQ
108-88-3			RQ 454 kg final RQ RQ 1 lb
			final RQ
			RQ 0.454 kg final RQ
Tetraethyl Lead	10 lb	10 lb	RQ 10 lb final RQ
78-00-2			RQ 4.54 kg final RQ
Xylene	100 lb	-	RQ 100 lb final RQ
1330-20-7			RQ 45.4 kg final RQ
Ethylbenzene	1000 lb	-	RQ 1000 lb final RQ

ENG / AGHS Page 13 / 15

100-41-4			RQ 454 kg final RQ
Benzene	10 lb	-	RQ 10 lb final RQ
71-43-2			RQ 4.54 kg final RQ

US State Regulations

California Proposition 65

This product contains the following Proposition 65 chemicals.

Chemical name	California Proposition 65	
Toluene - 108-88-3	Developmental	
Tetraethyl Lead - 78-00-2	Carcinogen	
Ethylbenzene - 100-41-4	Carcinogen	
Benzene - 71-43-2	Carcinogen Developmental Male Reproductive	

U.S. State Right-to-Know Regulations

Chemical name	New Jersey	Massachusetts	Pennsylvania
Toluene 108-88-3	X	X	Х
Tetraethyl Lead 78-00-2	X	X	Х
Xylene 1330-20-7	X	X	Х
Ethylbenzene 100-41-4	X	X	Х
Benzene 71-43-2	Х	X	Х

U.S. EPA Label Information

EPA Pesticide Registration Number Not applicable

16. OTHER INFORMATION, INCLUDING DATE OF PREPARATION OF THE LAST REVISION

NFPA Health hazards 1 Flammability 3 Instability 0 Physical and chemical properties -

HMIS Health hazards 2* Flammability 3 Physical hazards 0 Personal protection X

Revision Date 18-Oct-2016

Revision Note No information available.

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

Reference Sources for Section 11

API (1977) Mutagenicity evaluation of unleaded gasoline. Study conducted by Litton Bionetics. API Med. Res. Publ. 28-30173. Washington DC: American Petroleum Institute.

API (1983) Carcinogenic potential of key petroleum products. Study conducted by Eppley Institute for Research in Cancer, University of Nebraska Medical School. API Med. Res. Publ. 30-31646. Washington DC: American Petroleum Institute.

ENG / AGHS Page 14/15

API (1995) Primary skin irritation study in rabbits of API 91-01 and PS-6. Unleaded test gasolines. Study conducted by Hill Top Biolabs Inc. API Toxicology Report No. 409. Washington DC: American Petroleum Institute.

API (2005) Baseline gasoline vapor condensate: a 13-week whole-body inhalation toxicity study in rats with neurotoxicity assessments and 4-week in vivo genotoxicity and immunotoxicity assessments. Study conducted by Huntingdon Life Sciences. Study No. 00-6125. Washington DC: American Petroleum Institute.

ARCO (1986-A) Primary eye irritation study in rabbits administered test article F-64-01 unleaded Watson premium gasoline. UBTL Study No. 60583. Los Angeles CA: ARCO.

ARCO (1986-B) Dermal sensitization study in guinea pigs administered test article F-64-01 unleaded premium gasoline. UBTL Study No. 60613. Los Angeles CA: ARCO.

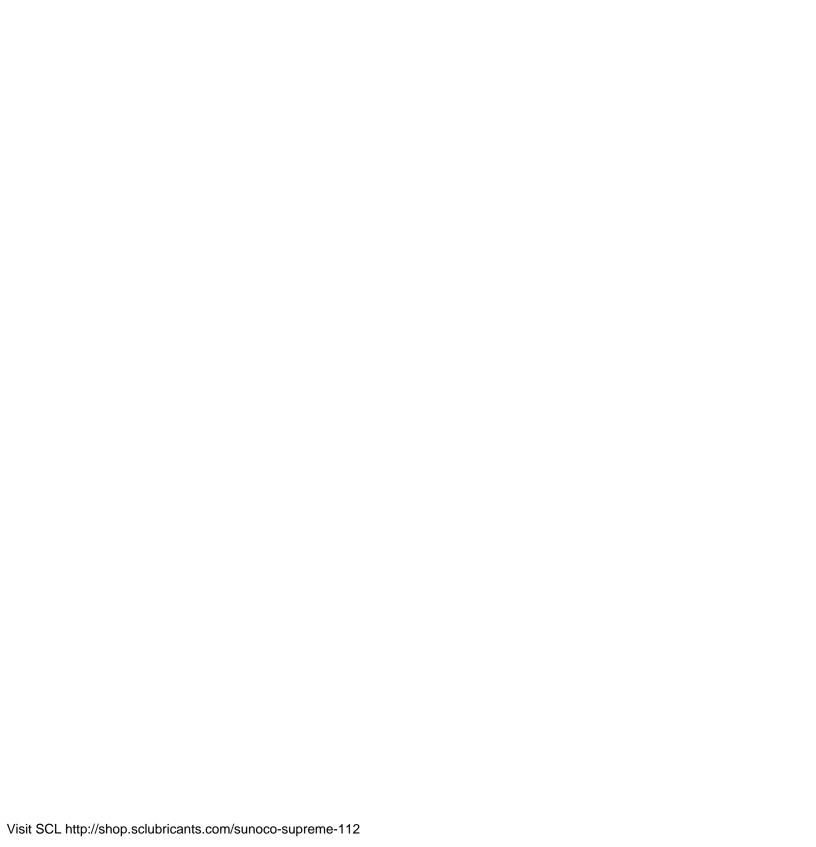
ARCO (1986-C) Twenty-eight (28) day dermal toxicity study in rats on test article F-64-01 unleaded Watson premium gasoline. UBTL Study No. 60761. Los Angeles CA: ARCO.

Davis, A. et al (1960) The effects on human volunteers of exposure to air containing gasoline vapor. Arch Environ Health 1, 548-554.

Drinker, P. et al (1943) The threshold toxicity of gasoline vapor. J Ind Hyg Toxicol 25, 6, 225-232.

Halder, C.A. et al (1985) Hydrocarbon nephropathy in male rats: identification of the nephrotoxic components of unleaded gasoline. Toxicol Ind Health 1, 3, 67-87.

McKee, R.H. et al (2000) Assessment in rats of the reproductive toxicity of gasoline from a gasoline vapor recovery unit. Reprod Toxicol 14, 4, 337-353.


Roberts, L. et al (2001) Developmental toxicity evaluation of unleaded gasoline vapor in the rat. Reprod Toxicol 15, 5, 487-494.

Short, B.G. et al (1989) Promoting effects of unleaded gasoline and 2,2,4-trimethylpentane on the development of atypical cell foci and renal tubular cell tumors in rats exposed to N-ethyl-N-hydroxy-ethylnitrosamine. Cancer Research 49, 22, 6369-6378.

End of Safety Data Sheet

ENG / AGHS Page 15 / 15

